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Different models of random walks on the dual graphs of compact urban structures are considered. Analysis
of access times between streets helps to detect the city modularity. The statistical mechanics approach to the
ensembles of lazy random walkers is developed. The complexity of city modularity can be measured by an
informationlike parameter which plays the role of an individual fingerprint of Genius loci. Global structural
properties of a city can be characterized by the thermodynamic parameters calculated in the random walk
problem.
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I. INTRODUCTION TO CITY NETWORK STUDIES

Studies of urban networks have a long history. Many re-
searches have been devoted to the optimizations of transpor-
tation routes and power grids, to the predictions of traffic
flows between the highly populated city districts, and to the
investigations of habits and artifact exchanges between dis-
tanced settlements in historical eras. In most of them, rela-
tions between different components of urban structure are
often measured along streets, the routes between junctions
which form the nodes of an equivalent planar graph. The
graph-theoretic principles have been applied in �1� in order
to measure the hierarchy in regional central place systems
and in �2� to the measurement of transportation networks.
The use of graph-theoretic view and network analysis of spa-
tial systems in geographic science is reviewed in �3�. It is
interesting to mention that graphs have been widely used to
represent the connectivity between offices in buildings �4�
and to classify various building types in �5�.

In all these studies, the traffic end points and junctions
were treated as nodes and the routes were considered as
edges of some planar graphs. Being embedded into the geo-
graphical and economical landscapes, these planar graphs
bare their multiple fingerprints. Among the main factors fea-
turing them are the high costs of the maintenance of long-
range connections and the scarce availability of physical
space. Spatial networks differ from other complex networks
and call for alternative approaches to investigate them �6�.

While studying the motifs and cycles in the complex net-
works, a comparative analysis of the original graph and of its
randomized version is used. If a motif is statistically signifi-
cant, it appears in the real network much more frequently
than in randomized versions of the graph �7�. However, in
planar city street patterns, its randomized version is not of
significance since, first, it is surely a nonplanar graph due to
the randomness of edge crossings and, second, the long-
range connections which inevitably are present in random
graphs in abundance are extremely costly in real cities �6�. In
�8�, it has been proposed to compare city street patterns with

gridlike structures, which is indeed useful essentially for
regular urban development.

It was formulated in the classical essay of Hughes �9� that
the accessibility of important city objects for vehicle traffic
and pedestrians is always the chief factor in regulating the
growth and expansion of the city. A broad, simple scheme of
main traffic lines gives a sense of connectedness and unity to
the various parts of the city and links up country and town.
In �10,11�, a significant correlation between the topological
accessibility of streets and their popularity, microcriminality,
microeconomic vitality, and social livability had been estab-
lished. In the traditional representation of space syntax based
on relations between streets through their junctions, the ac-
cessibility or distance is associated with points or junctions.

We would like to mention that the issues of global con-
nectivity of finite graphs and accessibility of their nodes are
the classical fields of researches in graph theory. They are
studied by means of certain dynamical processes defined on
the graphs. In particular, in order to reach “obscure” parts of
large sets and estimate the probable access times to them,
random walks are often used �12�. There are a number of
other processes that can be defined on a graph describing
various types of diffusion of a large number of random walk-
ers moving on the network at discrete time steps �13�. In all
such processes we have deal with discrete time Markov
chains studied in probability theory. Markov chains have the
property that their time evolution behavior depends only
upon their current state and the state transition properties of
the model.

At each time step every walker moves from its current
node to one of the neighboring nodes along a randomly se-
lected link. The metric distance between the nodes is of no
matter for such a discrete time diffusion process and then the
focus of study is naturally shifted from the original problem
of traditional space syntax to a dual one based on relations
between the streets which themselves are treated as nodes.
The distance between two streets, in such a representation, is
a distance in the graph-theoretic sense. The dual graphs of a
geographic network comparable in its structure with other
complex networks are irrelevant to either distance or physi-
cal space constraints. The relations between the traditional
space syntax representation based on the relations between
streets through their junctions and the dual representation
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that is a morphological representation of relations between
junctions through their streets have been studied in detail in
�14�. Dual city graphs have been developed and studied
within the concept of space syntax �10�. The key character-
istics in space syntax is that precedence is given to linear
features such as streets in contrast to fixed points which ap-
proximate locations �11�. Dual city graphs have been dis-
cussed recently in �15�. In �16�, they are called the informa-
tion city network.

In �17�, while identifying a street over a plurality of routes
on a city map, the “named-street” approach has been used, in
which two different arcs of the original street network are
assigned to the same street ID provided they have the same
street name. The main problem of the approach is that the
meaning of a street name could vary from one district or
quarter to another even within the same city. For instance,
the streets in Manhattan do not meet, in general, the conti-
nuity principle, rather playing the role of local geographical
coordinates.

Being interested in the statistics of random walks, we gen-
eralized the approach used in �17� in a way to account the
possible discontinuities of streets. Namely, we assign an in-
dividual street ID code to each continuous part of it even if
all of them share the same street name. The dual graph is
constructed by mapping edges coded with the same street ID
into nodes of the dual graph and intersections among each
pair of edges in the original graph into edges connecting the
corresponding nodes of the dual graph as was done in �17�.

In �15�, an intersection continuity �ICN� principle differ-
ent from our identification approach has been used: two
edges forming the largest convex angle in a crossroad on the
city map are assigned the highest continuity and therefore are
coupled together, acquiring the same street ID. The main
problem with the ICN principle is that the streets crossing
under convex angles would artificially exchange their iden-
tifiers, which is not crucial for the study of degree statistics,
but makes it difficult to interpret the results on random walks
and detect the dynamical modularity of the city.

It is also important to mention that the number of street
ID’s identified within the ICN principle usually exceeds sub-
stantially the actual number of street names in a city. In
�6,15,18–20�, degree statistics and various centrality mea-
sures for the data set of square mile samples of different
world cities investigated. However, the decision on which a
square mile would provide an adequate representation of a
city is always questionable.

In this paper, we use an alternative strategy investigating
the spectral properties of random walks defined on the dual
graphs of compact city patterns bounded by natural geo-
graphical limitations. The reason we consider compact urban
domains is twofold. First, it allows us to avoid the problem
of a “square mile” and, second, compact urban domains have
been usually developed “at once,” in accordance with certain
architectural principles; their partial redevelopment has been
occasional and rear, so that they can be considered typical.

We have studied Markov chains defined on six undirected
dual graphs corresponding to the different street and canal
urban structures. Two of them are situated on islands: Man-
hattan �with an almost regular gridlike city plan� and the
network of Venice canals �imprinting the joined effect of

natural, political, and economical factors acting on the net-
work during many centuries�. We have also considered two
cities founded shortly after the Crusades and developed
within medieval fortresses: Rothenburg ob der Tauber
�o.d.T.� �the medieval Bavarian city preserving its original
structure from the 13th century� and the Bielefeld downtown
�Altstadt Bielefeld� composed of two different parts: the old
one founded in the 13th century and the modern part sub-
jected to partial urban redevelopment at the end of the 19th
century. To supplement the study, we have investigated the
canal network of the city of Amsterdam. Although it is not
actually isolated from the national canal network, it is bind-
ing to the delta of the Amstel river, forming a dense canal
web showing a high degree of radial symmetry. The scarcity
of physical space is among the most important factors deter-
mining the structure of compact urban patterns. The general
information on the dual graphs of compact urban street and
canal patterns that we have studied is given in Table I. The
spectral properties of finite Markov chains defined on these
dual graphs are compared with those of a model example: a
hypothetical village extended along one principal street and
composed of N blind passes branching off it.

A square mile of the New York city grid and a square mile
pattern of the Venice street array have been discussed re-
cently in �15,18–20�; however, to our knowledge, the canal
patterns have never been subjected to a network analysis.
The navigation efficiency in Manhattan streets has been stud-
ied in �16�.

It is worth mentioning the importance of the implemented
street identification principle for the conclusion on the de-
gree statistics of dual city graphs. The comparative investi-
gations of different street patterns performed in �6,15� imple-
menting the ICN principle reveal scale-free degree
distributions for the vertices of dual graphs. However, in �17�
it has been reported that under the street-name approach the
dual graphs exhibit small-world character, but scale-free de-
gree statistics can hardly be recognized. The results on the
probability degree statistics for the dual graphs of compact
urban patterns analyzed in accordance with the street identi-
fication principle that we have described above are compat-
ible with that of �17�. Compact city patterns do not provide

TABLE I. Some features of dual graphs of the studied compact
city patterns: �V� is the number of streets, �E� the number of junc-
tions �crossroads�, and the graph diameter diam�G� is the maximal
graph-theoretical distance between any two vertices of the dual
graph. In the last column, the random target access time �, the
expected number of steps required to hit a node randomly chosen in
the city from the stationary distribution �. The random target access
time is independent of the starting point.

�V� �E� diam�G� �

Rothenburg o.d.T. 50 115 13 545

Bielefeld downtown 50 142 14 551

Amsterdam canals 57 200 11 849

Venice canals 96 196 14 1550

Manhattan 355 3543 17 4557
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us with sufficient data to conclude on the universality of
degree statistics. It is remarkable that the probability degree
distributions for the dual graphs correspondent to the com-
pact city patterns are broad and have a clearly expressed
maximum and a long right tail. The presence of a noticeable
maximum in the probability degree distributions indicates
that the structures of compact urban patterns are usually
close to a regular one and that there is the most probable
number of junctions an average street has in a given city. The
long right tails of distributions correspond to the highly con-
nected nodes of dual graphs, just a few “broadways,” em-
bankments, and belt roads crossing many more streets than
an average street in the city. To give an example, in Fig. 1,
we display the log-log plot of fractions of streets n�s� via the
number of their junctions s in Manhattan. These numbers are
shown by points, and the solid line is for the relevant cumu-
lative distribution Pc�s�=�s�=s

� n�s�� �7�.

II. RANDOM WALKS ON DUAL CITY GRAPHS: THE
DESCRIPTION OF MODELS AND A SKETCH OF RESULTS

We consider a connected graph G= �V ,E� with �V � =N
nodes and �E � =m undirected edges specified by its adjacency
matrix A such that Aij =1 if the node i is connected to j and
Aij =0 otherwise. A random walk starting at a node v0�V
and traversing a sequence of random nodes �vt� as t
=0,1 , . . . is a Markov chain characterized by the matrix of
transition probabilities T=DA, in which D is the diagonal
matrix of inverse vertex degrees, Dij =ki

−1�ij, where ki
=deg�i�, the degree of vertex i in graph G �the number of
junctions a street shares on the city plan�. The transition
matrix T meets the normalization condition � jTij =1. We de-
note by �t�RN the distribution of vt in the Markov chain,

�i
t=Pr�vt= i�. Then the rule of the walk can be expressed by

the simple equation

�t+1 = T†�t, �1�

where T† is the transposed transition matrix. In the present
paper, we discuss only undirected dual city graphs with sym-
metric adjacency matrices, Aij =Aji. Nowadays, certain driv-
ing directions are specified for the streets by traffic regula-
tion polices, so that the relevant transportation lines appears
to be directed. We do not consider them, limiting our present
study only to the network of pedestrian access. The distribu-
tion of a current node in the random walk defined by Eq. �1�
on undirected graphs after t steps tends to a well-defined
stationary distribution �i=ki /2m �which is uniform if the
graph is regular� that is a left eigenvector of the transition
matrix T, belonging to the largest eigenvalue 1 �12,21�. The
spectrum of problem �1� is contained in the interval �−1,1�.

In Sec. III, we calculate and analyze the expected number
of steps a random walker starting from node i makes before
node j is visited �the access time� for all pairs of streets
�canals� in compact urban patterns. The properties of access
times can be used in order to estimate the accessibility of
certain streets and districts by random walkers starting from
the rest of city. In particular, the access times allows one to
introduce the equivalence classes of nodes and to obtain a
well-defined ordering of these equivalence classes, indepen-
dent of any reference node. The nodes in the lowest class are
difficult to reach but easy to get out of, while the nodes in the
highest class are easy to reach but difficult to leave. We also
discuss the random target access times and the distributions
of mean access times in the compact cities. The latter char-
acteristics can be used in order to detect ghettos �the groups
of relatively isolated nodes� and estimate the accessibility of
certain districts from the streets located in other parts of the
city.

The problem of random walks �1� defined on finite graphs
can be related to a diffusion process which describes the
dynamics of a large number of random walkers. The associ-
ated Laplace operator is more convenient, since its spectrum
is positive. Indeed, the eigenvalues in Eq. �1� can be nega-
tive, so that the spectral moments �i�i

−n could oscillate
strongly for large networks. In contrast, the eigenvalues of
the Laplacian are positive, which allows one to study its
spectral properties by the powerful methods of statistical me-
chanics, in which characteristic functions f��i� defined on the
spectrum ��i� are considered.

The diffusion process is defined by the expectation num-
ber of random walkers, n�RN, and described by the equa-
tion

ṅ = Ln , �2�

in which the scaled Laplace operator L �symmetric� is de-
fined by

L = 1 − D−1/2TD1/2, �3�

where 1 is the unit matrix. Let us note that L is related to the
transition matrix T in Eq. �1� by T=D1/2�1−L�D−1/2. All ei-
genvalues of L belong to the interval ��� �0,2�; the eigen-

FIG. 1. The logarithm of the fractions of streets, ln n�s�, via the
logarithm of the number of their junctions, ln s in Manhattan
�shown by points�. The solid line represents the logarithm of the
relevant cumulative distribution, ln Pc�s� �7�.
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vectors are normalized, �n��� � =1, and orthogonal, 	n���n���

=���.

The analysis of spectral properties of the Laplace operator
allows for detection of fine-scale dynamical modularity of
the city which cannot be seen from the transition matrix T
and provides us a tool for the estimation of the entire city
stability with respect to occasional cuts of certain transpor-
tation lines breaking it up into dynamically isolated compo-
nents. In Sec. IV, we consider the modes of the diffusion
process defined on the dual city graphs and compute the
coefficients of linear correlations between densities of ran-
dom walkers that flow along the edges of dual city graphs in
discrete steps. Specifying a certain correlation threshold, we
detect the groups of nodes traversed by the essentially corre-
lated flows of random walkers. The structures of essentially
correlated flows and their appearance are the individual char-
acteristics of a city. We measure the quantity and extension
of clusters of nodes sharing the essentially correlated flows
of random walkers by an information parameter reflecting
the complexity of random walk traffic.

In Sec. V, we discuss the statistical mechanics of so-called
lazy random walks specified by the parameter 0	�
1. In
the model of lazy random walks, an agent located at a node
v moves to a neighboring node with probability �kv

−1, but
rests modeless with probability �1−��. We compute the well-
known thermodynamic quantities �the internal energy, en-
tropy, the free energy, and pressure� describing the macro-
scopic states of an ensemble of lazy random walkers on the
dual graphs of compact urban patterns. We provide a detailed
interpretation for each thermodynamic parameter in the con-
text of random walks.

III. ACCESS TIMES IN COMPACT CITY STRUCTURES

The important characteristic of random walks defined on
finite graphs is the access time Hij, the expected number of
steps before node j is visited, starting from node i �12�. The
elements of the matrix Hij are computed for each pair of
nodes i , j following the formula

Hij = 2m�
s=2

N
1

1 − �s
��sj

2

kj
−

�si�sj

�kikj

 , �4�

in which �1=1
�2� ¯�N�−1 are the eigenvalues and �s
are the relevant eigenvectors of the symmetric transition ma-
trix D−1/2TD1/2.

The access time from i to j may be different from the
access time from j to i, Hij�Hji, even in a regular graph. A
deeper symmetry property of access times for undirected
graphs was discovered in �22�,

Hij + Hjk + Hki = Hik + Hkj + Hji, �5�

for every three nodes in G. This property allows for the
ordering of nodes in the graph with respect to their accessi-
bility for random walkers. It has been pointed out in �12� that
the nodes of any graph can be ordered, so that if i precedes j,
then Hij 
Hji. This ordering is not unique, but one can par-
tition the nodes by putting i and j in the same equivalence
class if Hij =Hji and obtain a well-defined ordering of the

equivalence classes, independent of any reference node. The
nodes in the lowest class are difficult to reach but easy to get
out of, while the nodes in the highest class are easy to reach
but difficult to leave. If a graph has a vertex-transitive auto-
morphism group, then Hij =Hji for all i , j�G. The random
target identity �21�

�
j

� jHij = const �6�

states that the expected number of steps �the random target
access time �� required to reach a node randomly chosen
from the stationary distribution � is a constant, independent
of the starting point of the given graph G. The values of
random target access times grow with the size of graphs and
are very sensitive to their structures. Their values for com-
pact urban structures are given in the last column of Table I.

The properties of access times can be used in order to
estimate the accessibility of certain streets and districts by
random walkers starting from the rest of city. Computations
of access times to the streets in the studied compact urban
structures convinced us that for any given node i the access
times to it, Hij, change with j inferentially in comparison
with their typical values, and therefore, the mean access time

hi =
1

N
�
j=1

n

Hij �7�

can be considered as a good parameter for estimating the
accessibility of a street by random walkers. Distributions of
mean access times in the city, �h, can be considered as the
estimations of its connectedness. In particular, it helps to
detect the ghettos, the groups of streets almost isolated �in
the dynamical sense� from the rest of town. In Fig. 2, we
present together the distributions of mean access times to the
streets in Manhattan �dashed line� and Rothenburg o.d.T.
�solid line�. The distribution for Rothenburg o.d.T. exhibits a

FIG. 2. �Color online� The distributions of mean access times h
to the streets in Manhattan �dashed line� and Rothenburg ob der
Tauber �solid line�. The distribution �h for Rothenburg o.d.T. ex-
hibits a local maximum at relatively long access times �300 steps�,
indicating the presence of a number of low-accessible streets in the
town.
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local maximum at relatively long access times ��300 steps�,
indicating that there are a number of low accessible streets in
the town, a ghetto.

The distribution of mean access times in the downtown of
Bielefeld is of essential interest since it is comprised of two
structurally different parts �see Fig. 3�a��. Part A keeps its
original structure �founded in the 13th–14th centuries�, while
part B had been subjected to the partial redevelopment in the
19th century �Fig. 3�a��.

It is important to mention that the city districts con-
structed in accordance with different development principles
and in different historical epochs can be easily visualized on
the dual graph of the city. In Fig. 3�b�, we show a three-
dimensional �3D� representation of the dual graph of the
Bielefeld downtown. The �xi ,yi ,zi� coordinates of the ith ver-
tex of the dual graph G in 3D space are given by the relevant
ith components of three eigenvectors u�2�, u�3�, and u�4� of the
adjacency matrix AG �which does not coincide with the tran-
sition matrix T�. These eigenvectors correspond to the sec-
ond, third, and fourth largest �in absolute value� eigenvalues

of AG �23�. The 3D dual graph of Bielefeld displays clearly a
structural difference between A and B parts: in 3D represen-
tation, the relevant subgraphs are located in the orthogonal
planes �Fig. 3�b��. Sometimes other symmetries of dual
graphs can be discovered visually by using other triples of
eigenvectors if the number of nodes in the graph is not too
large.

In Fig. 4, we display the distributions of mean access
times h to the streets located in the medieval part A starting
from those located in the same part of Bielefeld downtown,
from A to A �solid line�. It has been computed by averaging
Hij over i , j�A in Eq. �7�. The dashed line presents the
distribution of mean access times to the streets located in the
modernized part B starting from the medieval part A �from A
to B, i�A and j�B�. One can see that in average in takes
longer time to reach the streets located in B starting from A.
A similar behavior is demonstrated by the random walkers
starting from B �see Fig. 5�: on average, it requires longer
time to leave a district for another one. Study of random
walks defined on the dual graphs helps to detect the quasi-
isolated districts of the city.

IV. DYNAMICAL MODULARITY IN COMPACT CITY
STRUCTURES

Dynamical modularity is a particular division of the graph
into groups of nodes on which the certain modes of diffusion
process are localized. It can be detected by analyzing spectral
properties of the relevant dual graph that is of the spectrum
of some differential operator defined on it �24�. In particular,

FIG. 3. �Color online� The city map of Bielefeld downtown �a�
is presented together with its 3D representations of the dual graph
�b�. The A part keeps its original structure �founded in the 13th–
14th centuries�; part B which had been redeveloped in the 14th
century. The �xi ,yi ,zi� coordinates of the ith vertex of the dual
graph in three-dimensional space are given by the relevant ith com-
ponents of three eigenvectors u�2�, u�3� and u�4� of the adjacency
matrix A of the dual graph.

FIG. 4. �Color online� The distributions of mean access times h
to the streets located in the medieval part A starting from those
located in the same part of Bielefeld downtown, from A to A �solid
line�. The dashed line presents the distribution of mean access times
to the street located in the modernized part B starting from the
medieval part A �from A to B�. An average, in takes a longer time to
reach the streets located in B starting from A.
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for the undirected graphs, it is convenient to consider differ-
ential elliptic self-adjoint operators with a positive spectrum.
We have studied the Laplace operator defined by Eq. �3�.

The eigenvalues of Laplace operator �3� along with the
continuous approximations of their densities for the dual
graphs of compact urban patterns are shown in Figs. 6–8.
The similarity of the spectra allows us to divide the studied
compact urban patterns into three categories: �i� medieval
cities, Bielefeld �Fig. 6� and Rothenburg o.d.T.; �ii� canal
patterns, Venice �Fig. 7� and Amsterdam; �iii� spectra with a
highly degenerated eigenmode ��=1�, Manhattan �Fig. 8�.

It is important to note that the densities of eigenvalues for
compact urban patterns differ dramatically from those com-
puted for classical random graphs of the Erdös-Rényi model

�25,26�, deviate from the semicircular law, and the densities
found for the scale-free random-tree-like graphs in �27�. In
�28�, the density of eigenvalues for the Internet graph on the
autonomous system �AS� level is computed. The Internet
spectrum on the AS level is broadly distributed with two
symmetric maxima and similar to the eigenvalue density of
random scale-free networks. In contrast, the spectral density

FIG. 5. �Color online� The distributions of mean access times h
to the streets located in the B part starting from B �solid line�. The
dashed line presents the distribution of mean access times to the
street located in the A part starting from B.

FIG. 6. The eigenvalues of the Laplace operator �3� defined on
the dual graph of Bielefeld together with the continuous approxi-
mation of its density.

FIG. 7. The eigenvalues of the Laplace operator �3� defined on
the dual graph of Amsterdam canal network together with the con-
tinuous approximation of its density.

FIG. 8. �Color online� The eigenvalues of the Laplace operator
�3� defined on the dual graph of Manhattan together with the con-
tinuous approximation of its density.
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for the compact city samples are bell shaped and tend to turn
into a sharp peak localized at �=1 due to the highly degen-
erate one-mode which would score a valuable fraction of
eigenvalues �48% for Manhattan�. One-modes come in part
from pairs of streets of minimal connectivity branching of
either “broadways” or belt roads. These structures are over-
represented in compact city patterns.

The slowest modes of diffusion process �2� allow one to
detect the city modules characterized by the individual ac-
cessibility properties. The primary feature of the diffusion
process in compact urban patterns is the flow between the
dominant pair of city modules: the broadways and the rela-
tively isolated streets remote from the primary roads.

Due to the proper normalization, the components of the
eigenvectors n��� play the role of the participation ratios
�PR’s� which quantify the effective numbers of nodes partici-
pating in a given eigenvector with a significant weight. This
characteristic has been used in �28� and by other authors to
describe the modularity of complex networks. However, in a
majority of highly degenerate modes, PR is not a well-
defined quantity �since the different vectors in the eigenspace
corresponding to the degenerate mode would obviously have
different PR’s�.

As time advances the distribution of random walkers ap-
proaches a steady state ni

��ki, in which all diffusion currents
are balanced. It corresponds to the principal eigenvector ni

�1�

related to the smallest eigenvalue of L. The relaxation pro-
cesses toward the steady state are described by the remaining
eigenvectors n���, �
1, with the characteristic decay times
����, such that exp�−1/�����=��. The second smallest eigen-
value of the scaled Laplace operator �3� is related to the
graph diameter, diam�G�
−ln�N−1� / ln��2�, the maximum
distance between any two vertices in the graph. It is also
related to the Fiedler vector �29� describing the algebraic
connectivity of the graph. Namely, let us consider the com-
ponents of the eigenvector n�2� corresponding to the second
smallest eigenvalue �2 for the scaled Laplacian �3� defined
on a connected graph G�V ,E�. Define V1= �v�V :nv

�2�	0�
and V2= �v�V :nv

�2��0�; then, the subgraphs induced by V1

and V2 are connected.
In general, each nodal domain on which the components

of the eigenvector n��� does not change sign refers to a co-
herent flow �characterized by its decay time ����� of random
walkers toward the domain of alternative sign. The nodal
domains participate in the different eigenmodes as one de-
gree of freedom, and therefore their total number is impor-
tant for detecting the dynamical modularity of city networks.
It is known from �30� that the eigenvector n��� can have at
most �+m�−1 strong nodal domains �the maximal con-
nected induced subgraphs, on which the components of
eigenvectors have a definite sign� where m� is the multiplic-
ity of the eigenvalue ��, but not fewer than two strong nodal
domains ��
1� �31�. However, the actual number of nodal
domains can be much smaller than the bound obtained in
�31�. In the case of degenerate eigenvalues, the situation be-
comes even more difficult because this number may vary
considerably depending upon which vector from the
m�-dimensional eigenspace of the degenerate eigenvalue ��

is chosen. A fragment of the nodal matrix for the Chelsea

village �Fig. 9�a�� in Manhattan island is shown on Fig. 9�b�:
the components of all eigenvectors localized on the nodal
domains displayed in white �black� have always positive
�negative� sign.

We investigate the statistics of components of eigenvec-
tors n��� localized on a given street, �ni

�����. To uncover a fine
modular structure of compact city patterns, we have com-
puted the linear correlation coefficients between the lists of
eigenvector components for all pairs of streets in a city,

Cij =
Cov��ni

�����,�nj
������

�Var��ni
������Var��ni

������
. �8�

The linear correlation measures how well a linear function
explains the relationship between two data sets. The correla-
tion is positive if an increase in the eigenvector components
localized on a given street corresponds to an increase in

FIG. 9. �Color online� �a� Plan of Chelsea village in Manhattan
and the matrix plot of its nodal domains �b�. All eigenvectors local-
ized on the nodal domains displayed in white �black� have always
positive �negative� sign.
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those related to other streets and negative when an increase
in one corresponds to a decrease in the other.

The study of correlations between the components of
eigenvectors allows for a precise recovering of all dynamical
modules in a city, street by street. By tuning the sensitivity
threshold �
0, one can detect the groups of streets charac-
terized by significant pairwise correlations Cij ��. In case of
a degenerate eigenmode, the whole bunch of streets of mini-
mal accessibility joins a correlation cluster at once. Investi-
gating the size of clusters characterized by the significant
pairwise correlations between the eigenvectors components,
we have found that it is very sensitive to the threshold value
�. Pairs of correlated streets can be detected for �
�c, be-
low the critical value �c individual for each city. For in-
stance, the strongest correlations in Manhattan island ��
�0.16� are observed between Bowery Street �Chinatown�
and 6th Avenue �Greenwich Village� and between Lafayette
Street and Mott Street �Chinatown�. By reducing � just by
1%, we immediately get many new correlated pairs and
�South FDR Drive, Allen Street�, (Greene Street �Soho�, Av-
enue D), (Crosby Street �Little Italy�, Avenue D), �Centre
Street, Elizabeth Street�, �Allen Street, 6th Avenue�, �Lafay-
ette Street, Avenue B�, �Broadway, West Street� among oth-
ers. In most cases the streets in correlated pairs have the
same driving directions although the driving direction data
have not been initially used in the adjacency matrices. Re-
ducing the value of sensitivity threshold, one can detect the
triples of correlated streets and more structurally complicated
dynamical modules. Then the correlated clusters merge, ex-
hibiting a sharp phase transition into a giant connected com-
ponent for essentially small �.

The appearance of correlated k-tuples and their total num-
bers at given � are by no means random and encode impor-
tant information on the city connectedness. The complexity
of dynamical modularity can be measured by a quantity of
information encoded by the number of various k-tuples of
essentially correlated nodes at different values of the corre-
lation threshold � in the following way. Since the probability
that a connected correlated k-tuple appears in a random la-
beled graph of N nodes is

pk�N� = �N

k

−1

,

its appearance corresponds to some quantity of information
I=−pk�N�log2 pk�N�. For a mesh of values �
0, we counted
the total numbers of all correlated k-tuples appearing in each
city, Nk���, and then found the total amount of information
I��� encoded by the dynamical modularity in each studied
city pattern,

I��� = − �
k-tuples

Nkpk��V��log2 pk��V�� . �9�

It is worth mentioning that in the absence of correlations as
well as in the case when all fluxes of random walkers though
nodes of the dual city graph are correlated, no information
can be encoded, and therefore I=0. The results on the com-
parative information analysis of dynamical modularity of the
compact urban structures are displayed in Figs. 10–12.

Information �via the threshold of correlations, �� calcu-
lated for Rothenburg and Bielefeld �subjected to a partial
redevelopment� are almost equal �Fig. 10�. Both medieval
cities contain a number of streets characterized by relatively
highly correlated traffic �they are the belt roads encircling the
cities along their fortress walls�, while traffic along the
streets close to the city centers appears to be less correlated,
although all streets of low accessibility join the correlated

FIG. 10. Quantity of information �bits� encoded by the dynami-
cal modularity of Rothenburg and Bielefeld via the threshold of
essential correlations, 0
�
1.

FIG. 11. Quantity of information �bits� encoded by the dynami-
cal modularity of the Venice and Amsterdam canal networks via the
threshold of essential correlations, 0
�
1.
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cluster at once at some level �; then, the information on the
dynamical modularity turns to zero.

Information profiles obtained for the Venice and Amster-
dam canal networks look similar �see Fig. 11�. However, it
seems that information in a message on possible correlations
of gondoliers traffic in Venice could be much more valuable
than a cruise schedule along the Amstel embankments. The
triggering between different information states displayed in
Fig. 11 corresponds to the merging of diverse correlated
clusters into larger correlated modules. The information
peaks located close to �=0 indicate a phase transition to a
giant correlated component which covers most of the nodes
in the networks, but not all.

The scale of the graph shown in Fig. 12 is incompatible
with those of Figs. 10 and 11 since the dynamical modularity
in Manhattan island �one of the most regular city grids in the
world� contains essentially less information �it comes prima-
rily from the correlated clusters risen in the region of Central
Park� than that in the ancient cities.

V. STATISTICAL MECHANICS OF LAZY RANDOM
WALKS IN COMPACT CITY STRUCTURES

A number of different “measures” quantifying the various
properties of complex networks have been proposed in so far
in a wide range of studies in order to distinguish the groups
of nodes and shed light on the relations between them. Some
measures can be computed directly from the graph adjacency
matrix: likelihood �32�, assortativity �33�, clustering �34�,
degree centrality �35–37�, betweeness centrality �37�, link
value �38�, structural similarity �39�, and distance �counting
the number of paths between vertices� �40�. Other measures
�concerned with the networks embedded into Euclidean
space� involve the lengths of links or the true Euclidean dis-

tances between nodes: closeness centrality �35,41�, straight-
ness centrality �42�, �43�, expansion �38�, and information
centrality and graph efficiency �43,44�. A good summary of
the several centrality measures can be found in �20,45� for
the Internet-related measures. The list of available measures
is still far from being complete, new measures appearing
together with any forthcoming network model. It is also
worth adding some spectral measures �concerned the eigen-
values of graph adjacency matrix�: subgraph centralization
�46�, subgraph centrality �47�, network bipartivity �48�, and
many others.

In the present section, we study the statistics of flows of
lazy random walkers roaming in the compact city patterns.
The random walkers have no mass and do not interact with
each other, so that they do not contribute to the energy or to
the momentum transfer. Nevertheless, their flows have the
nontrivial thermodynamic properties induced by the complex
topology of streets and canals they flow along. The obvious
advantage of statistical mechanics is that the mathematical
objects we introduce and all relations between various statis-
tical quantities are well known in the framework of thermo-
dynamic formalism.

In the following, we use the inverse temperature param-
eter �
0 which can be considered either as an effective time
scale in the problem �the number of streets a walker passes in
one time step� or as the laziness parameter defined in Sec. II.
Since the eigenvalues �� of the scaled Laplace operator �2�
are positive and bounded, one can define for them three well-
known spectral functions: �i� the heat kernel �the partition
function�,

K��� = Tr exp�− �L� = �
�=1

N

e−���, �10�

converging as ��0, for N→�, �ii� the spectral zeta function
�the spectral moments�

��s� = �
�=1

N

��
−s, �11�

and �iii� the spectral density

���� = �
�=1

N

��� − ��� . �12�

These spectral functions are related to each other by the
Laplace transformation

K��� = �
0

�

d�e−������ �13�

and by the Mellin transformation �up to the � function� �50�

��s� =
1

��s��0

�

�s−1K���d� . �14�

Furthermore,

FIG. 12. Quantity of information �bits� encoded by the dynami-
cal modularity of Manhattan via the threshold of essential correla-
tions, 0
�
1.
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��s� = �
−�

�

�����−sd� . �15�

Let us note that since 0	��	2, we immediately obtain
bounds for the spectral moments,

��− n� 	 N � 2n, ��n� 
 N � 2−n.

The partition function K��� meets the conditions of Bern-
stein’s theorem �49�:

�− 1�nK�n���� � 0, � 
 0, n � 1,

and therefore defines a unique non-negative measure d����
=K���d� on R+ providing solutions of the Hamburger and
Stiltjes moment problems �50�. Concerning the list of “mea-
sures” given above, it is worth noting that, in principle, any
of spectral functions �10�–�12� at a given temperature �−1

can be used as a measure of some quantities relevant to a
certain lazy random walk model.

The ensemble of random walkers on the graph G�V ,E�
can be characterized by the following macroscopic quanti-

ties: �i� the internal �averaged� energy, Ē=−�� ln K���, �ii�
the entropy S=ln K���+�Ē, �iii� the free energy, F
=�−1ln K���, and �iv� the pressure P=�−1��V�ln K���. In the
last equality, we have considered the differential with respect
to the graph size as d �V � =����d�. The thermodynamics of
compact urban city patterns is presented in Figs. 13–21 and
in Table II. The collected data give an insight into the various
aspects of averaged street �canals� accessibility in a given
city.

Due to the complicated topology of streets and canals, the
flows of random walkers exhibit spectral properties similar

to those of a thermodynamic system characterized by a non-
trivial internal energy �Figs. 13–15�. It grows with tempera-
ture �the inverse parameter of lazy random walks� �−1 �albeit
still bounded in the interval �0,2��. As usual, the absolute
value of the internal energy relevant to a given city cannot be

FIG. 13. The growth of “internal energy” in the models of lazy
random walks with “temperature” �−1 �the inverse parameter of
lazy random walks� for the canal networks of Amsterdam and
Venice.

FIG. 14. The growth of “internal energy” in the models of lazy
random walks with “temperature” �−1 �the inverse parameter of
lazy random walks� for the medieval cities Rothenburg o.d.T. and
Bielefeld.

FIG. 15. The growth of “internal energy” in the models of lazy
random walks with “temperature” �−1 �the inverse parameter of
lazy random walks� for Manhattan and the theoretical example of a
“village” extended along the only principal street.
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precisely measured, but we can measure its difference in any
temperature interval. In principle, the slopes of internal en-
ergy curves are steeper �the internal energy grows faster with
�−1� in modern cities with a quite regular grid like structure,
in which any street has a relatively good accessibility.

In thermodynamics, entropy is an extensive state function
that accounts for the effects of irreversibility in thermody-
namic systems. It describes the number of possible micro-
scopic configurations of the system. In the problem of finite

random walks, its value quantifies the diversity of flows
which can be detected in the city at a given temperature and
grows with temperature. In Figs. 16–18, we display the en-
tropy curves via �−1. It is important to mention that the im-
provement of street accessibility causes a decrease of entropy
growth rates for large temperatures �small ��. The entropy of
random walker flows as well as its growth rate in Manhattan
is less than in any other compact city structure we studied.

Due to the numerous junctions and the highly entangled
meshes of city streets and canals, the random walkers lose

FIG. 16. The entropy curves via the inverse parameter of lazy
random walks, �−1, for the canal networks of Venice and
Amsterdam.

FIG. 17. The entropy curves via the inverse parameter of lazy
random walks, �−1, for Bielefeld and Rothenburg o.d.T.

FIG. 18. The entropy curves via the inverse parameter of lazy
random walks, �−1, for Bielefeld, Rothenburg, and Manhattan.

FIG. 19. The comparison of pressure spectra P��� acting on the
flows of random walkers with eigenmodes � into Amsterdam and
Venice.
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their way and it takes a long time for them to cross a city
roaming randomly along the streets. This can be interpreted
as an effect of a slight negative pressure involving the ran-
dom walkers into the city. It is obvious that the strength of
pressure should vary from one district to another within a
city and can be different for the different modes of the dif-
fusion process which have no rigorous bind to the city ad-
ministrative units being localized on certain groups of streets
and canals. We have computed the pressure spectra P���,
forcing the flows of random walkers with eigenmodes � into

the compact city structures �see Figs. 19–21�. Generally
speaking, the more junctions a city has, the stronger is the
drag force: despite Venice having more canals than Amster-
dam, the number of junctions between them is less than in
Amsterdam, and therefore the negative pressure in the latter
city is stronger �Fig. 19�. The numbers of streets in Rothen-
burg and in the downtown of Bielefeld are equal, but there
are more crossroads in Bielefeld than in Rothenburg �Fig.
20�.

One can see that pressure profiles have maxima close to
�=1 �corresponding to a minimal drug force� for Amster-
dam, Venice, and Manhattan. It calls for the idea of a “trans-
parency corridor”—i.e., a sequence of streets and junctions
�on which the relevant eigenmodes are localized� along
which the city can be crossed in minimal time. In Manhattan,
the pressure profile is almost zero at �=1. The eigenmode
�=1 is degenerated due to multiple junctions of low-
accessible streets indistinguishable with respect to the ran-
dom walker dynamics to Broadway and the FDR Drive. In
Venice, the minimal pressure is achieved on the Grand Canal
and Giudecca Canal, and it is due to Het IJ and Amstel river
in Amsterdam.

In Table II, we have sketched the figures for the internal
energy, entropy, the free energy, and heat capacity for all
studied cities at �=1 �for the usual random walks model�, for
the purpose of comparison. We also gave the location of
maxima for the heat capacity profiles.

VI. DISCUSSION AND CONCLUSION

We have studied the finite Markov chain processes de-
fined on the dual graphs of compact urban patterns. The traf-
fic of random walkers, indeed, does not describe the actual
traffic conditions in the city patterns that we have analyzed,
but concerns their topological properties giving a sense to the
notions of accessibility and modularity. Our approach can be
readily used in order to investigate the connectedness and
efficiency of transportation lines in different complex net-
works.

The methods developed in graph theory and in probability
theory give us a detailed picture of local and global proper-
ties of city structures. Dynamical modularity representing the
localization of dynamical modes on certain streets and canals
cannot be detected either from the adjacency matrix of a
graph or from the transition probability matrix. We have
studied the random walks of a large number of particles hav-
ing no masses introduced in the dual graphs of compact cit-
ies and investigated their properties by means of statistical
mechanics. The spectrum of the Laplace operator is broadly
distributed for compact city patterns and has a bell shape, in
general. However, it turns into a sharp peak if there are a
number of low-accessible street branching of a prime street
in a city.

To detect the dynamical modularity precisely, we have
computed the linear correlation coefficients between the lists
of eigenvector components for all pairs of streets �canals� in
the cities. Tuning the sensitivity threshold of correlations,
one can detect the various modules of essentially correlated
streets. The complexity of dynamical modularity can be mea-

FIG. 20. The comparison of pressure spectra P��� acting on the
flows of random walkers with eigenmodes � into Bielefeld and
Rothenburg.

FIG. 21. The comparison of pressure spectra P��� acting on the
flows of random walkers with eigenmodes � into Manhattan and
Venice.
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sured by the information quantity. The information versus
correlation profile is an individual city fingerprint.

The statistical mechanics description of random walks in
compact cities provides us with a rigorous definition of the
unique measure and all statistical moments which have a
definite relation to the entire topological properties of com-
plex networks. Due to a complicated topology of city streets
and canals, the flows of random walkers acquire nontrivial
thermodynamic characteristics which can be implemented in
studies of the interactions between different city modules and
of city stability with respect to occasional accessibility prob-
lems that would be of vital importance for city traffic condi-
tions in urgency.

The obvious advantage of the method is that the informa-
tion on the role of a given street or canal in the entire city
network can be interpreted by the very end, and all city mod-
ules can be named street by street.

The method can be generalized for complex networks
which can be described by directed or weighted graphs. For
instance, one can consider a graph of a city plan in which the
weights of edges are the actual lengths of streets. In the case
of the weighted adjacency matrix, the spectrum of the rel-
evant Laplace operator acquires pairs of complex-conjugated
eigenvalues. Then the components of eigenvectors are also

complex, and the coefficients of linear correlations should be
computed for the real and imaginary parts of the spectrum
separately. Other approaches could be used while studying
directed graphs for which the adjacency matrix is not sym-
metric. For the random walks defined on the directed graphs,
the probability that a random walker enters a node is not
equal to the probability it leaves the node. The ensembles of
random walkers introduced on the directed graphs can be
described by Nelson stochastic mechanics �51,52�. The sta-
tionary configurations of random walkers in such models can
be studied by means of biorthogonal decomposition �53�.
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